Telegram Group & Telegram Channel
Можно ли доверять feature importance из моделей машинного обучения

Только с оговорками. Feature importance помогает понять, какие признаки влияют на предсказание, но интерпретация зависит от типа модели и метода оценки важности.

Что нужно учитывать

1. Важность ≠ причинность
Высокое значение признака в модели не означает, что он вызывает результат — он просто помогает предсказывать его.

2. Коррелирующие признаки могут путать
Если несколько признаков связаны между собой, модель может «размазать» важность между ними или отдать её только одному, что исказит интерпретацию.

3. Разные методы — разные результаты
В деревьях часто используется Gini importance или gain, но они чувствительны к масштабам.
В моделях типа XGBoost можно использовать SHAP для более надёжной оценки вклада признаков.
Линейные модели дают понятные веса, но только при отсутствии мультиколлинеарности.

Как подходить к анализу признаков

Используйте несколько методов (например, permutation importance + SHAP).
Учитывайте контекст задачи и доменную экспертизу.
Не делайте выводов о «причинности» только по важности признаков — используйте дополнительные анализы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/975
Create:
Last Update:

Можно ли доверять feature importance из моделей машинного обучения

Только с оговорками. Feature importance помогает понять, какие признаки влияют на предсказание, но интерпретация зависит от типа модели и метода оценки важности.

Что нужно учитывать

1. Важность ≠ причинность
Высокое значение признака в модели не означает, что он вызывает результат — он просто помогает предсказывать его.

2. Коррелирующие признаки могут путать
Если несколько признаков связаны между собой, модель может «размазать» важность между ними или отдать её только одному, что исказит интерпретацию.

3. Разные методы — разные результаты
В деревьях часто используется Gini importance или gain, но они чувствительны к масштабам.
В моделях типа XGBoost можно использовать SHAP для более надёжной оценки вклада признаков.
Линейные модели дают понятные веса, но только при отсутствии мультиколлинеарности.

Как подходить к анализу признаков

Используйте несколько методов (например, permutation importance + SHAP).
Учитывайте контекст задачи и доменную экспертизу.
Не делайте выводов о «причинности» только по важности признаков — используйте дополнительные анализы.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/975

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Библиотека собеса по Data Science | вопросы с собеседований from tw


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA